### Cosmic observations

Uros Seljak LBNL/UC Berkeley INPA workshop, LBNL, May 8 2014

### Dark matter in cosmology

What can we learn about the dark matter from cosmology:

Density of dark matter

dark matter temperature: hot, warm or cold?

Neutrino contribution to dark matter

Interactions with other sectors and self-interactions

Large scale structure of the universe and cosmic microwave background can say something about all the dark matter

## How to learn about dark matter using large scale structure?

- 1) Classical test: redshift-distance relation: Sne, baryonic acoustic oscillations (BAO): CMB + galaxy clustering+Lya
- 2) Growth of structure: CMB, Ly-alpha, weak lensing, clusters, galaxy clustering, Sunyaev-Zeldovich effect
- 3) Scale dependence of structure (same tracers as above)

### Supernovae measure dark matter density



## Matter density from CMB

Sensitive to matter to radiation ratio:
lowering the ratio takes us more into radiation domination at z=1100: feedback effects enhance CMB anisotropies

 $\Omega_{\rm m} h^2 = 0.16,...,0.33$ 



## Baryon density from CMB

Baryon Density changes the structire of even-odd BAO peaks

 $\Omega_{\rm b}$ h<sup>2</sup> = 0.015,0.017..0.031



### 1) BAO: sound waves

- Each initial overdensity (in DM & gas) is an overpressure that launches a spherical sound wave.
- This wave travels outwards at 57% of the speed of light.
- Pressure-providing photons decouple at recombination. CMB travels to us from these spheres.
- Sound speed plummets. Wave stalls at a radius of 150 Mpc.
- Seen in CMB as acoustic peaks
- Overdensity in shell (gas) and in the original center (DM) both seed the formation of galaxies. Preferred separation of 150 Mpc.





## BAO in galaxy redshift surveys



- The acoustic oscillation scale depends on the matter-to-radiation ratio ( $\Omega_{\rm m}h^2$ ) and the baryon-to-photon ratio ( $\Omega_{\rm b}h^2$ ).
- The CMB anisotropies measure these and fix the oscillation scale.
- In a redshift survey, we can measure this along and across the line of sight.



• Yields H(z) and  $D_A(z)$ !

State of the art: SDSS III (aka BOSS) DR11 CMASS 1.3M redshifts over 9000 square degrees

BOSS officially completed the survey ahead of schedule: DR12 coming out later this year









With SDSS DR11 BAO distance scale measured to 1%

LambdaCDM fits well (w=-1+/-0.07)



DR11: Anderson et al 2013

#### BAO also detected in Lyman alpha forest

#### Delubac etal 2014



#### 2) Growth of structure by gravity



- ◆Perturbations can be measured at different epochs:
- 1.CMB z=1000
- 2. 21cm z=10-20 (?)
- 3.Ly-alpha forest z=2-4
- 4. Weak lensing z=0.3-2
- 5.Galaxy clustering z=0-2

Sensitive to dark energy, neutrinos

$$\ddot{\delta} + 2H\dot{\delta} = 4\pi G\bar{\rho}\delta \to \delta(t)$$

$$\left(\frac{\dot{a}}{a}\right)^2 = H^2 = \frac{8}{3}\pi G\bar{\rho} - Ka^{-2}$$

$$\bar{\rho} = \rho_m a^{-3} + \rho_{de} a^{-3(1+w)} + \rho_{\gamma} a^{-4} + \rho_{\nu} F(a)$$

## 3) Shape of matter power spectrum

$$\langle \delta(k)\delta^*(k')\rangle = P(k)\delta_D(k-k')$$



### Neutrino mass can be measured by LSS

- Neutrino free streaming inhibits growth of structure on scales smaller than free streaming distance
- If neutrinos have mass they contribute to the total matter density, but since they are not clumped on small scales dark matter growth is suppressed
- Minimum signal at o.o6eV level makes 4% suppression in power, mostly at k<o.1h/Mpc</li>
- SDSS coud reach this at 1sigma, DESI at 2-3 sigma
- LSS: weak lensing of galaxies and CMB, galaxy clustering



### Galaxy clustering in redshift space



SDSS

- 1) Measures 3-d distribution, has many more modes than projected quantities like shear from weak lensing
- 2) Easy to measure: effects of order unity, not 1%

### Galaxy power spectrum: biasing

- Galaxy clustering traces dark matter clustering
- Amplitude depends on galaxy type: galaxy bias b

$$P_{gg}(k)=b^2(k)P_{mm}(k)$$

- To determine bias we need additional (external) information
- Galaxy bias can be scale dependent: b(k)
- Once we know bias we know how dark matter clustering grows in time



Tegmark et al. (2006)

Why are galaxies biased?
Galaxies form at high density peaks of initial density:
rare peaks are more strongly clustered



The enhancement depends on the halo mass function slope

### Simulations: bias is scale dependent



Lines are theoretical local bias model with 2 free parameters

### How to determine bias?

Redshift space distortions redshift cz=aHr+v<sub>p</sub>

### real to redshift space separations



isotropic

squashed along line of sight

$$f = d \ln \sigma_8 / d \ln a$$

Reid

### Linear and nonlinear effects

On very large scales linear RSD distortions:

$$\delta_g = (b + f\mu^2)\delta = b(1 + \beta\mu^2)\delta$$

$$\mu = ec{k} \cdot ec{n}/k$$
  $eta = f/b$ 

From angular dependence (1=0,2) we can determine velocity power  $f_{0}$ 

On small scales: virialized velocities within halos lead to FoG, extending radially 10 times farther than transverse



# RSD observations state of the art: SDSS-III/BOSS



 $f\sigma_8 = 0.45 + -0.01 (z=0.57)$  (Reid et al 2014, also Samushia et al 2013, Beutler et al 2013)

## Theoretical uncertainties in redshift surveys: nonlinear effects



## Second LSS Method: Weak Gravitational Lensing: sensitive to total mass distribution (DM dominated)





Distortion of background images by foreground matter



## Convergence and shear

convergence

$$K = \int \frac{(r_{LSS} - r)r}{r_{lSS}} \vec{\nabla}^2 \Phi dr =$$

$$\frac{3}{2} \Omega_m H_0^2 \int \frac{(r_{LSS} - r)r}{r_{lSS}} dr \frac{\delta}{a}$$



shear

$$\gamma_1(\vec{l}) = \kappa(\vec{l}) \cos 2\varphi_l$$
$$\gamma_2(\vec{l}) = \kappa(\vec{l}) \sin 2\varphi_l$$

Convergence shear relation in Fourier space

### Method I: shear-shear correlations

$$C_l^{\kappa} = \frac{9}{4} \Omega_0^2 \int_0^{w_s} dw \frac{g^2(w)}{a^2(w)} P_{3D} \left( \frac{l}{f_K(w)}; w \right) \times \frac{f_K(w_s - w) f_K(w)}{f_K(w_s)}.$$

- Just a projection of total matter P(k)
- Need P(k) for dark matter: use N-body simulations (solved problem)
- Sensitive to many cosmological parameters



## State of the art in shear-shear: CFHT-LS Kiblinger et al 2013

#### Challenges:

Small scales: could be contaminated by baryonic effects

Redshift distributions not completely known

Additive systematics: a lot of data removed



# Theoretical uncertainties in weak lensing

- Baryonic effects:
   baryons redistribute
   dark matter inside
   halos: compress
   (cooling) or expand
   (AGN feedback)?
- Challenge: small scale baryonic physics effects can be projected to low I for nearby halos



### WL Method II: galaxy-shear correlations



Cross-correlation proportional to bias b

Galaxy auto-correlation proportional to b<sup>2</sup>



### Simulations: dark matter reconstruction

Baldauf, Smith, US, Mandelbaum (2009)

$$r=rac{\xi_{hm}}{\sqrt{\xi_{hh}\xi_{mm}}}
ightarrow \xi_{mm}=rac{\xi_{hm}^2}{r^2\xi_{hh}}$$





New statistic: Cross-correlation coefficient r nearly unity

## SDSS DR-7 data analysis

Mandelbaum etal, 2013

LENSES
70,000 M\*-1 galaxies (z<0.15),
62,000 low z LRGs (0.16<z<0.3),
35,000 high z LRGs (0.36<z<0.47)

SOURCES 10M, well calibrated photozs using spectroscopic surveys





## $\sigma_8(\Omega_m/0.25)^{0.57}=0.795\pm0.048$ Cosmology constraints



### Effect of gravitational lensing on CMB

$$T_{lensed}(\vec{\mathbf{n}}) = T_{unlensed}(\vec{\mathbf{n}} + \mathbf{d})$$
  $\mathbf{d} = -2\nabla\nabla^{-2}\mathbf{k}$ 

• Here k is the convergence and is a projection of the matter density perturbation.



# Gravitational lensing in CMB: reconstruction of lensing

$$\kappa \propto (\nabla_x T)^2 + (\nabla_y T)^2$$
$$\gamma_1 \propto (\nabla_x T)^2 - (\nabla_y T)^2$$
$$\gamma_2 \propto 2(\nabla_x T)(\nabla_y T)$$

Local estimate of typical patch size or shape

Compare to global average Zaldarriaga & US 1998

$$\begin{split} T_{lensed}(\vec{\vartheta}) &= T_{unlensed}(\vec{\vartheta} + \vec{\delta}) \approx T_{unlensed}(\vec{\vartheta}) + \vec{\delta} \cdot \vec{\nabla} T_{unlensed} + \dots \\ T_{lensed}(\vec{L}) &= T_{unlensed}(\vec{L}) + \sum_{l} T_{unlensed}(\vec{l})(\vec{L} - \vec{l}) \cdot \vec{l} \varphi(\vec{L} - \vec{l}) + \dots \\ \vec{\delta}(\vec{l}) &= \vec{l} \varphi(\vec{l}) \\ \vec{C} &= \left\langle T(\vec{l})T(\vec{l}') \right\rangle = C_{l}\delta_{ll'} + (\vec{l} - \vec{l}')(C_{l}\vec{l} - C_{l'}\vec{l}')\varphi(\vec{l} - \vec{l}') \\ \varphi(\vec{l}) &= \frac{1}{2} F_{ll'}^{-1}(\vec{T}C^{-1} \frac{\partial \vec{C}}{\partial \varphi(\vec{l}')}C^{-1}\vec{T}) \end{split}$$

## Optimal quadratic estimator

Okamoto and Hu 2002

### Current status: Planck and more

- Planck measures WL at 25 sigma
- See also ACT, Polarbear, and specially SPT results



# Future promise: CMB polarization, the ultimate weak lensing experiment?

- For low detector noise main statistical information is provided by B mode polarization (Hirata & Seljak 2003): B mode polarization is not present in primary anisotropy (except for non-scalar modes), therefore with B mode polarization we measure lensing, we are not limited by statistical fluctuations in the primary CMB, rather by noise, systematics, foregrounds, ...
- Cleanest probe of dark matter clustering: largest scales, linear growth, highest redshift, known to be 1100, very few systematics (contrast to galaxy lensing)
- Helps clean out B contamination
- Can calibrate LSS weak lensing surveys

# Cluster counting

- Halo mass function steep at high mass end: highly sensitive to amplitude change
- Counting clusters is easy. Relating observable to halo mass hard
- Scatter between the two biases amplitude determination: low mass clusters scatter into the sample
- Determining mean mass is hard: WL, SZ, X-ray hydrostatic equilibrium

### Planck cluster counting with SZ

Appears to favor lower amplitude than Planck CMB

But this could be caused by a bias in SZ flux-mass relation

Note that SZ C<sub>1</sub> does not require explicit calibration



#### Planck versus LSS

LSS constraints (RSD, lensing, clusters) consistent

All to the left of Planck (prefer lower  $\sigma_8 \Omega_m^x$ )

Planck reanalysis, more LSS data



F. Beutler, see also Beutler et al 2014<sup>40</sup>

#### Ly-alpha forest: basics



SDSS Quasar Spectrum

 Neutral hydrogen leads to

Lyman- $\alpha$  absorption at  $\lambda$  < 1216 (1+z<sub>q</sub>) Å; it traces baryons, which in turn trace dark matter



Probing warm dark matter (e.g. sterile neutrinos) with Lyman alpha forest





#### SDSS-III/BOSS and SDSS results

- SDSS: McDonald etal (2005)
- BOSS: Palanque Dellabruille et al (2013)



## Sunyaev-Zeldovich effect

- Traces gas pressure in clusters
- Can do cluster abundance or tSZ power spectrum
- tSZ C(l) very sensitive to amplitude  $\sigma_8^{\ 8}$
- Some astrophysical uncertainty, but small at low I

Komatsu & Seljak 2003



#### Planck results vs simulations



Data: Planck paper 21, ACT+SPT, simulations: McCarthy et al 2013 tSZ C<sub>1</sub> could be underestimated by 20% due to CIB uncertainty

# Summary of LSS

- BAO+CMB+SN determines matter density:  $\Omega_{\rm m}$ =0.30
- Amplitude of fluctuations at z<1 determined by several probes: some reaching 2-3% precision (BOSS RSD, CMB WL, tSZ C<sub>I</sub>, Lya)
- Some are high, some are low, but overall a remarkable agreement at  $\sigma_8$ =0.80
- Is there any evidence of neutrino mass yet?
- Planck team:  $\Sigma m_{\nu} < 0.20 \text{ eV}$  (95%)
- Some later analyses suggest :  $\Sigma m_v = 0.3^+ 0.1 \, \text{eV}$  (Beutler et al 2014)
- Still too early, but note that we are quickly approaching required statistical errors
- Planck reanalysis will be helpful (Spergel et al 2013)

# Future redshift surveys: DESI, Euclid, WFIRST...

Plan: measure 10<sup>7</sup> redshifts

Promise: detection of neutrino mass, unprecedented

dark energy equation of state





Future WL surveys: DES, HSC, Euclid, LSST...

Plan: 10<sup>8</sup>-10<sup>9</sup> galaxies (without redshifts)

LSS surveys will continue to produce new results

#### Conclusions

- LSS surveys powerful probe of dark matter: density, neutrino mass...
- Weak lensing and galaxy clustering (RSD) complementary
- Enormous observational progress in recent years: CMB WL, tSZ....
- Recent galaxy clustering results from SDSS III: BAO to 1%, amplitude to 2.5%
- Recent WL result from CFHT-LS, SDSS: amplitude to 3-6%
- CMB WL amplitude to 2%, tSZ C<sub>I</sub> also 2%, Lya P(k) also 2%
- in combination there is a remarkable consistency of most probes, roughly landing where Planck is (in the absence of massive neutrinos)
- Future LSS surveys: huge efforts, 2 planned satellites, numerous ground based efforts, up to an order of magnitude improvements over current constraints